
An extended abstract of this paper appears in Selected Areas in Cryptography - SAC 2014, Lecture
Notes in Computer Science, A. Joux and A. Youssef, Springer-Verlag, 2014. This is the full version.

Chaskey: An Efficient MAC Algorithm

for 32-bit Microcontrollers

Nicky Mouha1, Bart Mennink1, Anthony Van Herrewege1, Dai Watanabe2,
Bart Preneel1, and Ingrid Verbauwhede1

1Department of Electrical Engineering, ESAT/COSIC, KU Leuven and iMinds, Belgium.
firstname.lastname@esat.kuleuven.be

2Yokohama Research Laboratory, Hitachi, Japan.
dai.watanabe.td@hitachi.com

Abstract. We propose Chaskey: a very efficient Message Authentication Code (MAC) algorithm
for 32-bit microcontrollers. It is intended for applications that require 128-bit security, yet cannot
implement standard MAC algorithms because of stringent requirements on speed, energy consump-
tion, or code size. Chaskey is a permutation-based MAC algorithm that uses the Addition-Rotation-
XOR (ARX) design methodology. We prove that Chaskey is secure in the standard model, based on
the security of an underlying Even-Mansour block cipher. Chaskey is designed to perform well on
a wide range of 32-bit microcontrollers. Our benchmarks show that on the ARM Cortex-M3/M4,
our Chaskey implementation reaches a speed of 7.0 cycles/byte, compared to 89.4 cycles/byte for
AES-128-CMAC. For the ARM Cortex-M0, our benchmark results give 16.9 cycles/byte and 136.5
cycles/byte for Chaskey and AES-128-CMAC respectively.

Keywords. Microcontroller, Message Authentication Code, Standard Model Security, Permutation-
Based, ARX.

1 Introduction

Message Authentication Code (MAC) algorithms are one of the basic building blocks for cryp-
tographic systems. A MAC algorithm processes a message m and a secret key K to generate
a tag τ . It should be hard for an attacker to construct a forgery: that is, to generate a valid
combination of (m, τ) without knowledge of the secret key K. Thereby, the MAC algorithm
ensures the authenticity of the message m.

Over the years, a large variety of MAC algorithms have been proposed. Some of the most
commonly used algorithms today are CMAC [33,41], HMAC [8,65], and UMAC [16]. CMAC is
based on a block cipher, usually AES or Triple-DES, whereas HMAC uses a hash function such
as MD5, SHA-1, or SHA-2, and UMAC is based on a universal hash function combined with a
standard cryptographic primitive such as a block cipher or a hash function.

Unlike most other MAC algorithms, a nonce input is required for MAC algorithms based on
universal hash functions [21,66]. This includes MAC algorithms such as UMAC [16], Poly1305-
AES [11], and GMAC [34]. The nonce should not be reused, or this would lead to a forgery
attack. Furthermore, Poly1305-AES and GMAC become insecure when tags are truncated [37].
We note that currently used MAC algorithms based on universal hash functions typically make
use of multiplications. On several microcontrollers, the number of cycles required to execute an
integer multiplication instruction is data-dependent, which makes the implementations poten-
tially vulnerable to timing attacks [48].

For MAC algorithms that are based on hash functions, the block size is typically very large:
for MD5, SHA-1, SHA-2, and the upcoming SHA-3 [12], messages are processed in blocks of
at least 512 bits. For very short messages, this will result in a large overhead. But also for
longer messages, it is generally undesirable for typical microcontrollers to process such large
blocks. This is because many load and store operations are required to move data back and

forth between the limited number of registers and the RAM, which significantly increases the
time, energy, and code size of the MAC algorithm implementation.

A similar issue appears for block-cipher-based MAC algorithms, which typically use AES
or Triple-DES. On typical microcontrollers, the key schedule of these block ciphers increases
the register pressure: round keys must be either precomputed and stored in RAM, or computed
on the fly. Furthermore, on 32-bit platforms, the S-box operations of AES and Triple-DES
require extensive use of bit masking operations to implement the S-box operations, which again
negatively impacts the speed of the implementation. Finally, we note that MAC algorithms
based on reduced-round block ciphers such as ALPHA-MAC [25] and Pelican MAC [26] have
been proposed, yet their performance gain is small for very short messages because a full-round
block cipher is used for both initialization and finalization.

Chaskey

We present Chaskey, a permutation-based MAC algorithm that overcomes these issues. Chaskey
takes a 128-bit key K and processes a message m in 128-bit blocks using a 128-bit permutation
π. This permutation is based on the Addition-Rotation-XOR (ARX) design methodology. Its
design is inspired by the permutation of SipHash [3], however with 32-bit instead of 64-bit words.

Chaskey has the following features:

– Dedicated Design. Chaskey is a dedicated design for 32-bit microcontroller architectures.
The addition and XOR operations are performed on 32-bit words, and each of these opera-
tions requires only one instruction on these architectures.

– Cross-Platform Versatility. We took into account that certain microcontrollers do not
support variable-length bit rotations and bit shifts. By choosing some rotation constants to
be multiples of 8, these bit rotations are efficiently implemented by swapping 8-bit or 16-bit
registers.

– Efficient Implementation. Benchmarks on an ARM Cortex-M4 show that Chaskey re-
quires only 7.0 cycles/byte for long (≥ 128 byte) messages, and 10.6 cycles/byte for short
(16 byte) messages. It has been implemented in only 402 bytes of ROM. Results for the
Cortex-M0 are very good as well: 16.9 cycles/byte for long messages, 21.3 cycles/byte for
short ones, and 414 bytes of ROM for the implementation. There is, roughly speaking, a
linear relation between the number of cycles and energy consumption [24]. We therefore
expect Chaskey to be very energy efficient as well.

– Resistance Against Timing Attacks. On all microcontroller architectures that we are
aware of, every instruction of Chaskey takes a constant time to execute. The total number of
cycles depends only on the message length. Therefore, Chaskey is inherently secure against
timing attacks.

– Key Agility. Chaskey does not have a key schedule, as keys are simply XORed into the
state. Updating the key in Chaskey requires generating a new uniformly random 128-bit key,
and only two shifts and two conditional XORs on 128-bit words to generate two subkeys.

– Tag Truncation. Chaskey is robust under tag truncation. Unlike for example GMAC [37],
the best attack on Chaskey with short tags is tag guessing. We recommend |τ | ≥ 64 for
typical applications. Shorter tags may be used after careful analysis of the probability of
occasionally accepting an inauthentic message.

– Nonces are Optional. Several MAC algorithms (including GMAC [34], VMAC [49], and
Poly1305-AES [11]) require a nonce, and become completely insecure if this nonce is reused
(see e.g. [43]). Chaskey does not require a nonce, and therefore avoids these issues altogether.

2

– Provably Secure. We prove that Chaskey is secure, based on the security of an Even-
Mansour [35, 36] block cipher based on π, up to about D = 264 blocks of chosen plaintexts
and T = 2128/D off-line block cipher evaluations.

– Patent-Free. We are unaware of any patents or patent applications related to Chaskey.

The name Chaskey is derived from Chasqui, also written as Chaski. Chasquis were fast runners
that delivered messages in the Inca empire. They were of short stature, and could cover large
distances through mountainous areas with little nutrition available to them [56].

2 Preliminaries

Table 1 summarizes the notation used in this paper. Throughout, n is both the key size and
the block size. While the Chaskey algorithm is introduced for n = 128, we remark that our
statements on the Chaskey mode of operation are independent of this specific choice of n.

We interchangeably consider an element a of GF (2n) as an n-bit string a[n−1]a[n−2] . . . a[0]
and as the polynomial a(x) = a[n− 1]xn−1 + a[n− 2]xn−2 + . . . + a[0] with binary coefficients.
Let f(x) be an irreducible polynomial of degree n with binary coefficients. For n = 128, we
choose f(x) = x128 +x7 +x2 +x+1. Then to multiply two elements a and b, we represent them
as two polynomials a(x) and b(x), and calculate a(x)b(x) mod f(x). For example, we show how
to multiply an element by x in Algorithm 1. Note that x corresponds to bit string 012610, which
is 2 in decimal notation.

When converting between bit strings and arrays of 32-bit words, we always use little endian
byte ordering. Inside every byte, bit numbering starts with the least significant bit.

Table 1: Notation.

Notation Description

x‖y concatenation of bit strings x and y
|x| length of bit string x

x + y addition of x and y modulo 232 (in text)
x ⊞ y addition of x and y modulo 232 (in figures)
x ≪ s rotation of x to the left by s positions
x≪ s shift of x to the left by s positions
x⊕ y bitwise exclusive OR (XOR) of x and y
∆⊕x XOR difference of x and x′: ∆x = x⊕ x′

0a bit string consisting of a times 0
rightt(a) select the t least significant bits of a

x[i] bit selection: bit at position i of word x,
where i = 0 is the least significant bit

3 Specification of Chaskey

3.1 Mode of Operation

Chaskey uses an n-bit key K to process a message m of arbitrary size into a tag τ of t ≤ n bits.
For every key K, two subkeys K1, K2 are generated as shown in Algorithm 2.

The message m is split into ℓ blocks m1,m2, . . . ,mℓ of n bits each, except for the last
block mℓ which may be incomplete. We define that an empty message m = ∅ consists of one
empty block: |m1| = 0. An n-bit permutation π then iterates over the message, as specified in
Algorithm 3 and illustrated in Fig. 1.

3

K

m1

π

m2

π . . . π

mℓ

π τ

K1 K1

ri
g
h
t t

K

m1

π

m2

π . . . π

mℓ‖10
∗

π τ

K2 K2

ri
g
h
t t

Fig. 1: The Chaskey mode of operation when |mℓ| = n (top), and when 0 ≤ |mℓ| < n (bottom). The round
function of permutation π is shown in Fig. 3, the subkeys K1 and K2 are generated according to Algorithm 2,
and mℓ‖10

∗ is shorthand for mℓ‖10
n−|mℓ |−1.

m1

m2 mℓ

τ

ri
g
h
t tE

K‖K

E

K ⊕K1‖K1

E

K‖K

. . . E

K‖K

m1

m2 mℓ‖10
∗

τ

ri
g
h
t tE

K‖K

E

K ⊕K2‖K2

E

K‖K

. . . E

K‖K

Fig. 2: The Chaskey-B mode of operation when |mℓ| = n (top), and 0 ≤ |mℓ| < n (bottom). Chaskey-B is an
alternative description of Chaskey based on an Even-Mansour block cipher. The subkeys K1 and K2 are generated
according to Algorithm 2, and mℓ‖10

∗ is shorthand for mℓ‖10
n−|mℓ |−1.

An alternative description of Chaskey based on an Even-Mansour [35,36] block cipher E with
2n-bit key and n-bit block size is given in Algorithm 4, and illustrated in Fig. 2. This block-
cipher-based description is equivalent to Chaskey once we define E using π as EX‖Y (m) =
π(m ⊕X) ⊕ Y . The purpose of this block-cipher-based alternative is to reduce the security of
Chaskey to the security of the underlying block cipher E. A security proof will be given in Sect. 5.
This security proof views Chaskey-B as a variant of FCBC by Black and Rogaway [17,18], shown
in Algorithm 5.

From this block-cipher-based description, it can be seen that Chaskey is similar to the
three-key MAC constructions proposed by Black and Rogaway [17,18]. Their constructions are
variants of CBC-MAC [1, 40] that are secure for variable-length messages and avoid padding
for messages of an integer number of blocks. As in CMAC [33,41], our algorithm requires only
one n-bit key, from which two n-bit subkeys are generated. However, unlike CMAC, Chaskey
does not require any block cipher calls to generate these two subkeys, only two shifts and two
conditional XORs on 128-bit words.

Chaskey also differs from the CBC-MAC variants in literature because its underlying block
cipher uses an Even-Mansour construction and as it uses the same subkey twice in the last
two subkey XORs: before and after the last permutation call. Therefore, it is possible that this
subkey (or part thereof) can remain inside the registers of the microcontroller. This reduces the
number of load and store operations, which are very expensive on typical microcontrollers.

4

Every key K must be chosen independently and uniformly at random from the entire key
space. To avoid attacks with a practical complexity of off-line permutation evaluations, as will
be explained in Sect. 6.1, we restrict the total number of blocks to be authenticated under the
same key K to at most 248. This corresponds to refreshing the key after at most 4 petabytes
of data. To avoid tag guessing attacks, we recommend that the tag size |τ | ≥ 64. Changing |τ |
always requires selecting a new key K uniformly at random.

Algorithm 1 TimesTwo
1: procedure TimesTwo(a)
2: if a[127] = 0 then
3: return (a≪ 1)⊕ 0128

4: else
5: return (a≪ 1)⊕ 012010000111

Algorithm 2 SubKeys
1: procedure SubKeys(K)
2: K1 ← TimesTwo(K)
3: K2 ← TimesTwo(K1)
4: return (K1, K2)
5:

Algorithm 3 Chaskey
1: procedure Chaskeyπ(K, m)
2: (K1, K2)← SubKeys(K)
3: m1‖ . . . ‖mℓ ← m
4: h1 ← K
5: for i = 1, . . . , ℓ− 1 do
6: hi+1 ← π(hi ⊕mi)

7: if |mℓ| = n then
8: L← K1

9: else
10: mℓ ← mℓ‖10

n−|mℓ|−1

11: L← K2

12: hℓ+1 ← π(hℓ ⊕mℓ ⊕ L)⊕ L
13: return τ ← rightt(hℓ+1)

Algorithm 4 Chaskey-B

1: procedure Chaskey-BE(K, m)
2: (K1, K2)← SubKeys(K)
3: m1‖ . . . ‖mℓ ← m
4: h1 ← 0n

5: for i = 1, . . . , ℓ− 1 do
6: hi+1 ← EK‖K(hi ⊕mi)

7: if |mℓ| = n then
8: L← K1

9: else
10: mℓ ← mℓ‖10

n−|mℓ |−1

11: L← K2

12: hℓ+1 ← EK⊕L‖L(hℓ ⊕mℓ)
13: return τ ← rightt(hℓ+1)

Algorithm 5 FCBC [17,18]

1: procedure FCBC((p1, p2, p3), m)
2:
3: m1‖ . . . ‖mℓ ← m
4: h1 ← 0n

5: for i = 1, . . . , ℓ− 1 do
6: hi+1 ← p1(hi ⊕mi)

7: if |mℓ| = n then
8: q ← p2

9: else
10: mℓ ← mℓ‖10

n−|mℓ |−1

11: q ← p3

12: hℓ+1 ← q(hℓ ⊕mℓ)
13: return τ ← hℓ+1

3.2 Permutation π

The permutation π is built using three operations: addition modulo 232, bit rotations, and
XOR (ARX). The structure is the same as that of SipHash [3], but with 32-bit instead of 64-bit
words and different rotation constants. Although SipHash has been proposed only very recently,
it has found its way into several widely used software packages. For example, SipHash is used
inside the hash table implementations of FreeBSD, Python, Perl, and Ruby [4]. Both Chaskey
and SipHash use the 2-input MIX operation of Skein [38], one of the finalists of the SHA-3
competition [57].

In Chaskey, the permutation π consists of eight applications of a round function. This round
function is specified in Fig. 3.

Although we are confident that eight rounds is enough for a secure construction, we rec-
ommend that implementers include the 16-round variant Chaskey-LTS (long term security) as
a fallback in case of cryptanalytical breakthroughs. Chaskey-LTS consumes roughly twice the
number of cycles and thus twice the amount of energy as Chaskey, but is still much faster
than AES-CMAC. As only the number of rounds is different, it is possible to implement both
Chaskey and Chaskey-LTS with negligible overhead in code size.

Note that half of the rotation constants of π are chosen to be multiples of eight. This
is because a variety of microcontrollers do not support rotations and shifts over arbitrary
amounts, e.g. the Renesas H8/300 CPU supports only one-bit rotations and shifts, the Renesas

5

≪ 5

v1 v0 v2 v3

v1 v0 v2 v3

≪ 16

≪ 8

≪ 13≪ 7

≪ 16

Fig. 3: A round of the Chaskey permutation π, defined as: v0‖v1‖v2‖v3 ← π(v0‖v1‖v2‖v3). We intentionally
swapped v0 and v1, as this reduces the number of crossing lines in the figure.

H8/2000 supports one-bit and two-bit rotations and shifts, and Microchip’s 8-bit microcon-
trollers (PIC10/12/16/18) support one-bit rotations. Due to our choice of constants, implemen-
tation on 8- and 16-bit microcontrollers will be more efficient than had these constants been
chosen at random. They furthermore allow us to implement Chaskey efficiently on a wide range
of 32-bit microcontrollers, yet we have found that they do not seem to make π weaker against
cryptanalytical attacks.

4 Implementation Results

We implemented Chaskey on several microcontroller platforms. We provide implementation
results on ARM Cortex-M0 and -M4 platforms, and compare these to AES-128-CMAC on
the same platforms. All our implementations have been compiled with GNU Tools for ARM
Embedded Processors version 4.7.3 20121207. The Cortex-M0 benchmarks are executed on an
STMicroelectronics STM32F030R8 microcontroller, the Cortex-M4 ones on an STM32F401RE.

We compare the results for our Chaskey implementation with what is, to the best of our
knowledge, the fastest available AES implementation for the ARM Cortex-M series: SharkSSL [60,
61]. Since no AES-128-CMAC benchmarks are available for this implementation, we instead
compare with AES-128-ECB, which is guaranteed to be at least as fast and small as AES-128-
CMAC. Note that we list SharkSSL results for the Cortex-M3, since Cortex-M4 results are
not available. However, the architecture of both microcontrollers is extremely similar, and thus
results are expected to be the same.

Results for the various implementations are shown in Table 2. In all of our own benchmarks,
round keys are precomputed, and time required to do so is not included in the listed numbers.

Table 2 shows that Chaskey compares favorably to AES-based MAC functions. On the
ARM Cortex-M0 and -M4, Chaskey reaches 16.9 cycles/byte and 7.0 cycles/byte respectively.

6

This is to be compared to 112.7 cycles/byte and 66.7 cycles/byte on the Cortex-M0 and -
M3 respectively, using the AES-128-ECB implementation from SharkSSL [60,61]. Furthermore,
Chaskey can be implemented in 402 bytes and 414 bytes of ROM on respectively the Cortex-M0
and -M4. The SharkSSL AES-128-ECB implementation on the other hand, requires 4398 bytes
and 3922 bytes for respectively a Cortex-M0 and -M3 implementation.

Table 2: Benchmark results for Chaskey and AES-128-CMAC on Cortex-M0/M4. AES-128-CMAC is imple-
mented using AES code from the MAGEEC [53] framework. AES-128-ECB on Cortex-M0/M3 is based on figures
from SharkSSL [60, 61]. Note that compiling with speed optimization flags does not always result in the fastest
implementation.

Data gcc ROM size Speed
Microcontroller Algorithm

[byte] flags [byte] [cycles/byte]

Speed optimized

Cortex-M0 AES-128-ECB (SharkSSL) n/a n/a 8 380 124.4
AES-128-CMAC 128 -O2 13 492 136.5
Chaskey 16 -O2 1 308 21.3

128 -O2 1 308 18.3

Cortex-M3/M4 AES-128-ECB (SharkSSL) n/a n/a 4 854 66.7
AES-128-CMAC 128 -O2 28 524 105.0
Chaskey 16 -O2 908 10.6

128 -O2 908 7.0

Size optimized

Cortex-M0 AES-128-ECB (SharkSSL) n/a n/a 4 398 112.7
AES-128-CMAC 128 -Os 11 664 140.0
Chaskey 16 -Os 414 21.8

128 -Os 414 16.9

Cortex-M3/M4 AES-128-ECB (SharkSSL) n/a n/a 3 922 86.1
AES-128-CMAC 128 -Os 10 952 89.4
Chaskey 16 -Os 402 16.1

128 -Os 402 11.2

5 Proof of Security

We focus on the security of the Chaskey mode of operation. For this, we consider n, t ∈ N

to be arbitrary values. The proof consists of two phases. Firstly, we will prove the security of
Chaskey-B in the standard model, based on any E with 2n-bit key and n-bit block size. This
will be done in Sect. 5.1. Next, in Sect. 5.2 we will show how these results generalize to Chaskey,
once we use EX‖Y (m) = π(m⊕X)⊕Y for π ∈ {0, 1}n. In this phase of the proof we will employ
the ideal permutation model. Denote by block(k, n) the set of all block ciphers with k-bit key
and n-bit block size, and let perm(n) denote the set of all permutations on n bits. Note that for
E ∈ block(k, n), we have EK ∈ perm(n) for all K ∈ {0, 1}k . The definitions below follow Bellare
et al. [9] and Iwata and Kurosawa [41,42].

MAC Security. Let H : K × {0, 1}∗ → {0, 1}t be a MAC function.

Advmac
H (q,D, r) = max

A
Pr

(

K
$
←− K , (m, τ)

$
←− AHK ;

HK(m) = τ and m never queried

)

,

7

where the maximum is taken over all adversaries making at most q queries of total length at
most D blocks and running in time r.

VIPRF Security. We can define the variable input-length pseudorandom function (VIPRF)
security as follows. Let H : K × {0, 1}∗ → {0, 1}t be a MAC function. Denote by rand(∗, t)

the set of all functions from {0, 1}∗ to {0, 1}t. By R
$
←− rand(∗, t) we mean that we consider a

function R that associates to each input string m ∈ {0, 1}∗ a random element from {0, 1}t.

Advviprf
H (q,D, r) = max

A

∣

∣

∣
Pr
(

K
$
←− K ; AHK = 1

)

− Pr
(

R
$
←− rand(∗, t) ; AR = 1

)
∣

∣

∣
,

where the maximum is taken over all adversaries making at most q queries of total length at
most D blocks and running in time r.

3PRP Security. The strength of a block cipher E is conventionally expressed as the PRP
(pseudorandom permutation) security. In Chaskey-B (see Algorithm 4) we use a block cipher
E ∈ block(2k, n) on input of three different keys: EK‖K , EK⊕K1‖K1

, and EK⊕K2‖K2
, where K1,

K2 are generated as shown in Algorithm 2. As the keys (K,K1,K2) are dependent, so are the
three different usages of E. As such, a slightly more involved security notion is needed, which
we call 3PRP. For ease of presentation, the definition is adapted to the specific key generation
and block cipher use mode of Chaskey.

Adv3prp
E (D, r) = max

A

∣

∣

∣

∣

∣

∣

∣

∣

Pr

(

K
$
←− {0, 1}k , (K1,K2)← SubKeys(K) ;

AEK‖K ,EK⊕K1‖K1
,EK⊕K2‖K2 = 1

)

−

Pr
(

p1, p2, p3
$
←− perm(n) ; Ap1,p2,p3 = 1

)

∣

∣

∣

∣

∣

∣

∣

∣

,

where the maximum is taken over all adversaries making at most D queries and running in time
r.

5.1 Security of Chaskey-B

We start with the security of Chaskey-B of Algorithm 4. Let E ∈ block(2n, n) be any block
cipher.

Theorem 1. Let K
$
←− {0, 1}n and consider Chaskey-BE

K : {0, 1}∗ → {0, 1}t. Then,

Advmac
Chaskey-B(q,D, r) ≤

2D2

2n
+

1

2t
+ Adv3prp

E (D, r).

Proof. Consider any adversary A that makes q queries of total length at most D blocks and that
runs in time r. Note that Chaskey-BE evaluates E for three different (but related) keys: K‖K,

K⊕K1‖K1, and K⊕K2‖K2, where (K1,K2)← SubKeys(K). Let p1, p2, p3
$
←− perm(n) be three

random permutations. As a first step, we replace these three different types of evaluations of E
by p1, p2, p3, and for simplicity call the resulting scheme Chaskey-PRPp1,p2,p3

. A basic hybrid

argument shows that their MAC security bounds differ by at most Adv3prp
E (D, r). Formally,

Advmac
Chaskey-B(q,D, r) ≤ Advmac

Chaskey-PRP(q,D, r) + Adv3prp
E (D, r),

and it remains to analyze the security of Chaskey-PRPp1,p2,p3
: {0, 1}∗ → {0, 1}t, which is keyed

via (p1, p2, p3)
$
←− perm(n)3. We simplify the analysis, by giving A unlimited computational

power and bounding Advmac
Chaskey-PRP(q,D,∞).

8

We note that

Chaskey-PRPp1,p2,p3
= rightt(FCBCp1,p2,p3

),

where FCBCp1,p2,p3
: {0, 1}∗ → {0, 1}n is given in Algorithm 5. Let R

$
←− rand(∗, n). By a hybrid

argument,

Advmac
Chaskey-PRP(q,D,∞) ≤ Advviprf

FCBC(q,D,∞) + Advmac
rightt(R)(q,D,∞).

Iwata and Kurosawa [42, Lem. 5.1] proved3 that Advviprf
FCBC(q,D,∞) ≤ 2D2/2n, where FCBC is

keyed via (p1, p2, p3)
$
←− perm(n)3. The function rightt(R) is, naturally, MAC secure up to 1/2t.

This completes the proof. ⊓⊔

5.2 Security of Chaskey

We generalize the result of Sect. 5.1 to Chaskey of Algorithm 3.
The permutation π underlying Chaskey is in fact a publicly available permutation. In order

to provide a security proof for the mode of operation, we consider Chaskey with idealized
π. Consequently, we consider the security definitions of MAC, VIPRF, and 3PRP security

where, additionally, π
$
←− perm(n) is randomly drawn and the adversary has query access to this

underlying permutation.

Theorem 2. Let K
$
←− {0, 1}n, assume that π

$
←− perm(n), and consider Chaskeyπ

K : {0, 1}∗ →
{0, 1}t. Then,

Advmac
Chaskey(q,D, r) ≤

2D2

2n
+

1

2t
+

D2 + 2DT

2n
,

where T is defined as r/rπ for rπ denoting the running time of one evaluation of π.

Proof. Recall that Chaskey is equivalent to Chaskey-B once we select block cipher EK‖L(m) =

π(m ⊕ K) ⊕ L based on π ∈ perm(n). In Lem. 1, it is proven that Adv3prp
E (D, r) ≤ (D2 +

2DT)/2n, where A has access to either (EK‖K , EK⊕K1‖K1
, EK⊕K2‖K2

, π) or (p1, p2, p3, π), and
where T = r/rπ corresponds to the number of (forward or inverse) permutation evaluations
A can make. Together with Thm. 1, this completes the proof of Thm. 2. We remark that
we can indeed apply Thm. 1 even though A has additional access to π: after the 3PRP
swap, we consider Advmac

Chaskey-PRP(q,D,∞) where A has access to (Chaskey-PRPp1,p2,p3
, π).

As Chaskey-PRPp1,p2,p3
is independent of π, this permutation is irrelevant to A and we can

ignore it. A similar reasoning holds for Advviprf
FCBC(q,D,∞) and Advmac

rightt(R)(q,D,∞). ⊓⊔

Lemma 1. Under the notation of Thm. 2, we have Adv3prp
E (D, r) ≤

D2 + 2DT

2n
.

The proof is in part inspired by [41, Lem. 3] and in part by Patarin’s H-coefficient technique [58].
We refer to Chen and Steinberger [23] for a detailed discussion of this technique. Note that the
proof also generalizes the security analysis of the Even-Mansour block cipher [35,36].

Proof. We consider an adversary A that has access to four oracles (O1,O2,O3,O4): in the

real world, these are (EK‖K , EK⊕K1‖K1
, EK⊕K2‖K2

, π) for π
$
←− perm(n), K

$
←− {0, 1}k , and

(K1,K2) ← SubKeys(K), and in the ideal world these are (p1, p2, p3, π)
$
←− perm(n)4. The

3 An earlier bound of 2.5D2/2n was derived by Black and Rogaway [17,18].

9

adversary can only make forward queries to O1, O2, and O3, but has bidirectional access to
O4. We assume A is computationally unbounded, and without loss of generality that it is
deterministic. It makes D1 queries to its first oracle, D2 to its second, and D3 to its third, where
D1 +D2 +D3 = D, and T queries to O4 = π. We will be overly generous to the adversary: after
it made all of its D + T queries, but before it outputs its decision, we reveal the key K (in the
real world) or send a randomly generated dummy key K (in the ideal world). We summarize
the interaction of A with its oracles by a transcript τ = (K, τ1, τ2, τ3, τ4), where we denote by

τj = {(m
(1)
j , c

(1)
j), . . . , (m

(Dj)
j , c

(Dj)
j)} the directionless list of queries to Oj for j = 1, 2, 3, and

by τ4 = {(x(1), y(1)), . . . , (x(T), y(T))} to O4 . We assume the adversary never makes duplicate

queries, hence m
(i)
j 6= m

(i′)
j , c

(i)
j 6= c

(i′)
j , x(i) 6= x(i′), and y(i) 6= y(i′) for all j, i, i′.

Denote by X (resp. Y) the probability distribution of transcripts in the real (resp. ideal)
world, for fixed deterministic adversary A. Say that a transcript τ is attainable if it can be ob-
tained from interacting with (p1, p2, p3, π), hence if Pr (Y = τ) > 0. The H-coefficient technique
states the following, the proof of which we refer to [23].

Lemma 2 (H-coefficient Technique). Consider a fixed deterministic adversary A. let T =
Tgood∪Tbad be a partition of the set of attainable transcripts. Let ε be such that for all τ ∈ Tgood

Pr (X = τ)

Pr (Y = τ)
≥ 1− ε.

Then, Adv3prp
E (A) ≤ ε + Pr (Y ∈ Tbad).

Say that a transcript τ is bad if two different queries would lead to the same input or output to
π, were A interacting with the real world. Formally, τ is bad if one of the following conditions
is set:

∃i, i′ : m
(i)
1 ⊕m

(i′)
2 = K1 ∨ c

(i)
1 ⊕ c

(i′)
2 = K ⊕K1, (1)

∃i, i′ : m
(i)
1 ⊕m

(i′)
3 = K2 ∨ c

(i)
1 ⊕ c

(i′)
3 = K ⊕K2, (2)

∃i, i′ : m
(i)
2 ⊕m

(i′)
3 = K1 ⊕K2 ∨ c

(i)
2 ⊕ c

(i′)
3 = K1 ⊕K2, (3)

∃i, i′ : m
(i)
1 ⊕ x(i′) = K ∨ c

(i)
1 ⊕ y(i′) = K, (4)

∃i, i′ : m
(i)
2 ⊕ x(i′) = K ⊕K1 ∨ c

(i)
2 ⊕ y(i′) = K1, (5)

∃i, i′ : m
(i)
3 ⊕ x(i′) = K ⊕K2 ∨ c

(i)
3 ⊕ y(i′) = K2, (6)

where K1 = TimesTwo(K) and K2 = TimesTwo(K1). A transcript that is not bad is called
good.

Upper Bounding Pr (Y ∈ Tbad). Our goal is to bound the event that a transcript τ in the

ideal world satisfies (1)–(6). Note that K
$
←− {0, 1}n is a dummy key generated independently

of the transcripts (τ1, τ2, τ3, τ4). Hence using the fact that K → K ⊕ K1, K → K ⊕ K2, and
K → K1 ⊕ K2 are bijections, there are at most 2D1D2 possible keys that would satisfy (1),
2D1T possible keys for (4), and similar bounds for (2), (3), (5), and (6). We find

Pr (Y ∈ Tbad) ≤
2D1D2 + 2D1D3 + 2D2D3 + 2D1T + 2D2T + 2D3T

2n
,

≤
D2 + 2DT

2n
.

Lower Bounding Ratio Pr (X = τ) / Pr (Y = τ). Consider a good and attainable tran-
script τ ∈ Tgood. Denote by ΩX = 2n · 2n! the set of all possible oracles in the real world and by

10

compX(τ) ⊆ ΩX the set of oracles in ΩX compatible with transcript τ . Define ΩY = 2n · (2n!)4

and compY (τ) similarly. The H-coefficient technique dictates:

Pr (X = τ) =
|compX(τ)|

|ΩX |
, and Pr (Y = τ) =

|compY (τ)|

|ΩY |
.

We start with |compX(τ)|. As τ ∈ Tgood, there are no two queries in τ with the same input to
or output of the underlying permutation. Consequently, any query tuple in τ fixes exactly one
input-output pair of the underlying oracle. As τ consists of D + T query tuples, the number of
possible oracles in the real world equals (2n−D−T)!. Similarly, the number of possible oracles
in the ideal world equals

∏3
j=1(2

n −Dj)!(2
n − T)!. We thus find

Pr (X = τ) =
(2n −D − T)!

2n · 2n!
,

Pr (Y = τ) =

∏3
j=1(2

n −Dj)!(2
n − T)!

2n · (2n!)4
≤

(2n −D − T)!(2n!)3

2n · (2n!)4
.

Concluding, Pr (X = τ) /Pr (Y = τ) ≥ 1. ⊓⊔

6 Cryptanalysis

6.1 Attack Setting

In this section, we give an overview of the cryptographic properties of the Chaskey permutation
π, and the two-key Even-Mansour block cipher EX‖Y (m) = π(m⊕X)⊕ Y . Note even if π has
structural weaknesses, the security proof of Sect. 5.1 guarantees that Chaskey remains secure
as long as EK‖K , EK⊕K1‖K1

, and EK⊕K2‖K2
are secure Even-Mansour block ciphers that are

indistinguishable from each other. In particular, attackers are restricted to the following setting:

Uniformly Random Key K. Every implementation of Chaskey should ensure that the n-bit
key K is chosen uniformly at random from the entire key space. In this way, Chaskey completely
avoids all attacks on EK‖K using weak keys [27], known keys [46] or related keys [10,13,14]. In
a weak-key attack, the attacker knows that the key K is chosen from a smaller subset of the
key space. The attacker controls the value of K in a known-key attack, which in the case of
the Even-Mansour block cipher corresponds to an attack on the underlying permutation π. In
a related-key attack, the attacker obtains encryptions under different keys, and will know (or
even control) the relationship among these keys.

Data Complexity D Below 2n/2 Chosen Plaintexts. No encryption device is allowed to
perform close to 2n/2 block cipher calls under the same key. This is because after about 2n/2

block cipher calls, an internal collision attack [59] becomes likely. The same restriction applies
to all iterated MAC constructions with an n-bit state. We will now explain that the data
complexity under the same key should be restricted further to avoid attacks with a practical
time complexity.

Time Complexity T Below 2n/D Block Cipher Evaluations. Even and Mansour [35,
36] proved that any attack on their construction requires about T block cipher evaluations
and 2n/D known plaintexts. Dunkelman et al. [32] described a key recovery attack on the
Even-Mansour construction to show that this bound is tight. As they clarify, this tight bound

11

holds for both single-key and two-key Even-Mansour. To avoid attacks with a practical time
complexity, the specification restricts the total number of blocks under the same key K to
at most 248. This limit assumes that performing about 280 off-line permutation evaluations is
impractical for the attacker. Implementations that require a higher security level should rekey
more frequently. We note that the amortized cost of rekeying is usually negligible, and rekeying
does not require additional cryptographic components if Chaskey is also used as a key derivation
function (KDF) [22].

No Chosen Ciphertext Attacks. The attacker cannot make any decryption queries E−1
K‖K ,

E−1
K⊕K1‖K1

, or E−1
K⊕K2‖K2

, for the simple reason that Chaskey implementations do not contain
the decryption function, and the corresponding keys are secret.

Tag Guessing Has Probability 2−|τ|. The probability of constructing a forgery by guessing
the tag is 2−|τ |. Guessing a tag correctly for Chaskey does not make additional forgeries easier.
The specification recommends that |τ | ≥ 64, which ensures that the probability of guessing τ
correctly after 232 trials is less than one in a billion. If it is acceptable to occasionally accept
an inauthentic message as authentic (e.g. in certain voice communication applications [37]), the
use of shorter tags may be carefully considered.

Implementation Attacks. Chaskey is inherently secure against timing attacks, as its execu-
tion time depends only on the message length |m|, and not on the secret key K. However, a
straightforward implementation of Chaskey provides no resistance against hardware side chan-
nel attacks, nor to fault attacks. Furthermore, note that if the internal state of Chaskey is
recovered and |τ | = n, it is easy to recover the secret key K from any (m, τ)-pair.

6.2 Cryptanalysis of the Block Cipher

We now proceed with our cryptanalysis results for the block ciphers EK‖K , EK⊕K1‖K1
, and

EK⊕K2‖K2
using π as the underlying permutation.

Standard Differential Cryptanalysis. We searched for differential characteristics of EK‖K

that are linear in GF (2), which means the output difference of every addition is the XOR of the
two input differences. This was done by formulating this problem as the search for low-weight
codewords in a linear code [63].

The best found characteristics for 1, 2, . . . , 8 rounds are shown in Table 3. We show only the
input and output differences; the linearity property can be used to find the internal differences.
We calculated the characteristic probability in two ways: by determining the probability of
every addition using the Lipmaa-Moriai formula [52] and multiplying these probabilities, and
by using Leurent’s ARX Toolkit [50, 51] to obtain a more accurate estimate that takes certain
dependencies between operations into account.

In Table 4, we give the differences after every round of the best found differential character-
istic for eight rounds, which corresponds to the last characteristic in Table 3. It is interesting to
note that this characteristic has what can be described as an hourglass structure: the differences
are sparse in the middle of the characteristics (located only in the most significant bits), and
gradually become denser towards the outer rounds. The same observation also holds for all other
characteristics of Table 3.

In Table 3, probabilities below 2−128 indicate that a characteristic exists only with some
probability. Although such characteristics are not usable in an attack, it is important to explore

12

them from a design point of view. Table 3 shows that Even-Mansour block ciphers based on π
have a very large security margin against even very advanced variants of differential cryptanal-
ysis attacks, especially as the data complexity in any attack on Chaskey is limited to 264.

Note that it is possible that better (possibly non-linear) characteristics exist, or that the
probability of a given characteristic is lower than the probability of the corresponding differ-
ential. However, we expect that these effects will not be significant enough to invalidate our
security claim against differential cryptanalysis.

Table 3: Best found differential characteristics for 1, 2, . . . , 8 rounds of the permutation π. Only the input and
output differences are shown. Each of these characteristics is linear, this property can be used to determine
the internal differences. We calculate the characteristic probability in two ways: assuming independence of every
operation and using the Lipmaa-Moriai formula, as well as by Leurent’s ARX Toolkit for a more refined estimate.

Rounds ∆⊕
in(v0, v1, v2, v3)→ ∆⊕

out(v0, v1, v2, v3) Lipmaa-Moriai Leurent

1
(00000000, 00000000, 80000000, 00000000)

1 1
→ (80000000, 80000000, 80000000, 80001000)

2
(00008400, 00000400, 00000000, 00000000)

2−4 2−4

→ (80008080, 00000040, 00000000, 80109080)

3
(00000008, 00000008, 00008181, 00000081)

2−16 2−16

→ (80109080, 80009810, 80009010, 92008082)

4
(C0240100, 44202100, 0C200008, 0C200000)

2−37 2−37

→ (10409000, 00547800, 00101840, 12408210)

5
(C8226120, 4C224101, 084C6908, 0C046900)

2−73 2−73.1

→ (E8001014, 08912214, 00802210, EA120916)

6
(1AC8DA46, 73C0D20A, 9282B2A3, 02947AA1)

2−133 2−132.8

→ (6A00109B, 50B7698C, 12866000, 68037999)

7
(8C74CC70, 7F3690AE, 5403A321, D1852232)

2−208 2−205.6

→ (DBCD9AC0, 293EC4DB, 08036B1F, B195C08B)

8
(90EA132B, 88490EDB, 45854D95, E6A41996)

2−293 2−289.9

→ (726DC8C0, 097D6D14, 24592382, 2C2329AF)

Truncated Differential Cryptanalysis. We used the same techniques that were applied to
Salsa20 [5] to find truncated differentials for EK‖K . More specifically, we introduced differences
in the most significant bits of the inputs, and searched for statistical biases in the output bits.
We found such biases for up to four rounds of the block cipher. For example, if in the plaintext
∆⊕v1[31] and ∆⊕v2[31] are both 1, then we found experimentally that ∆⊕v2[16] after four
rounds has a bias of about 2−12.48 towards 0. We tried out all combinations of input differences
in the most significant bits of the four input words, but did not find biases in any of the output
bit differences after five rounds or more, when experimenting with sets of 230 samples.

Meet-in-the-Middle Attacks. The idea behind a meet-in-the-middle attack is to separate
the mathematical equations that describe a block cipher into two or more groups, in such a way
that some variables do not appear in at least one of the groups of equations. After three rounds
of π, full diffusion occurs: every input bit affects every output bit. Similarly, π−1 also reaches
full diffusion after three rounds. As eight rounds of π consist of almost three full diffusions,
meet-in-the-middle attacks should not be applicable to Even-Mansour block ciphers based on
π.

13

Table 4: Best found linear differential characteristic for 8 rounds of π. This is the characteristic given in the
last row of Table 3. If we assume independence of every operation and use the Lipmaa-Moriai formula for every
addition, we find a probability of 2−293. Leurent’s ARX toolkit can be used to refine this probability to 2−289.9.
Note the hourglass structure: differences are sparse in the middle, and gradually become denser towards the outer
rounds.

Roundi ∆⊕v0 ∆⊕v1 ∆⊕v2 ∆⊕v3
Pr[Roundi−1

→ Roundi]

0 90EA132B 88490EDB 45854D95 E6A41996

1 1AC8DA46 73C0D20A B2A39282 02947AA1 2−76

2 0C200008 08200008 81048100 81000085 2−55

3 00000000 00000000 00008080 00800000 2−15

4 00000000 80000000 80000000 00000000 2−1

5 00000000 80008850 80008010 10000000 2−4

6 18400010 18C02200 10010240 08421212 2−19

7 6A00109B 50B7698C 12866000 68037999 2−39

8 726DC8C0 097D6D14 24592382 2C2329AF 2−84

Note that the attacker is not allowed to perform chosen-ciphertext attacks, which limits
the power of advanced meet-in-the-middle attacks, using the splice-and-cut technique that was
introduced for hash function cryptanalysis [2, 64] and subsequently applied to block ciphers as
well [20,67].

A further extension of splice-and-cut meet-in-the-middle attacks are biclique attacks [19,45].
Most applications of bicliques offer only slight improvements over brute force attacks [62].
Although brute-force-like attacks provide insight into the security of ciphers in the absence of
other shortcut attacks, they do not affect the practical security of the cipher.

Rotational Cryptanalysis. A randomly chosen key K ensures that the input of the permu-
tation π when used in an Even-Mansour block cipher will (with very high probability) have an
asymmetrical state, thereby preventing rotational attacks [44].

Slide Attacks. Because every round of π is identical, slide attacks [15] are applicable to π.
However, in a slide attack, about 2n/2 plaintext-ciphertext pairs are required before a slid pair
is found. Therefore, slide attacks have a data complexity that goes beyond our security bound,
and do not pose a threat to π, nor to Even-Mansour block ciphers based on π.

Fixed Points. Because π contains only the modular addition, XOR, and bitwise rotation
operations, the permutation has the following fixed point: π(0n) = 0n. Fixed-points are a type
of differerentiability attack [54]. When π is used inside the EK‖K block cipher, this fixed point
corresponds to EK‖K(K) = K. If K is chosen uniformly at random, this relationship only holds
with probability 2−n for any plaintext chosen by the attacker. Similar observations hold for
EK⊕K1‖K1

and EK⊕K2‖K2
. Although it may seem to be a bold move from a design point of

view to allow that E02n(0n) = 0n, we note that this property also holds for the stream cipher
Trivium [28, 30] and the block cipher KATAN [29]. However, no attacks have been found that
break the full version of these ciphers.

Dependency Between Key and Subkeys. As shown by Algorithm 1, the subkeys K1 and
K2 are generated from the key K as K1 = xK and K2 = x2K1. The proof of Sect. 5.1 requires
that an attacker cannot distinguish EK‖K , E(x+1)K‖xK , and E(x2+1)K‖x2K from each other. In
Sect. 5.2, we already proved that this assumption holds if the underlying permutation π is an

14

ideal permutation. We now argue that even if the permutation π of Sect. 3.2 is used instead,
an attacker cannot distinguish these three block ciphers. Because of the rotational relations
between the key K and the subkeys K1 and K2, rotational cryptanalysis [44] seems to be a
promising technique. However, the fact that (x + 1)K and xK, as well as (x2 + 1)K and x2K
both differ by K, seems to effectively preclude rotational cryptanalysis to distinguish E(x+1)K‖xK

or E(x2+1)K‖x2K from EK‖K , or from each other. Furthermore, the security proof assumes that
individual queries to the three aforementioned block ciphers are permitted, whereas an attacker
can in practice only observe τ .

Other Attacks. We do not consider zero-sum attacks [6] and cube attacks [31] to be a threat for
ARX ciphers, because the addition operation ensures that for every output bit, the polynomial
expression in GF (2) representing this bit in terms of its inputs will be of sufficiently high degree.
Moreover, rebound attacks [55] are not known to be relevant to secret-key algorithms.

7 Conclusion

Chaskey is a permutation-based MAC algorithm, with at its core an ARX-based permutation π
based on SipHash. Alternatively, Chaskey can also be interpreted as a block-cipher-based MAC
algorithm based on an underlying Even-Mansour block cipher.

Inspired by the block-cipher-based CMAC, Chaskey avoids padding for messages of an in-
teger number of blocks. Its subkey generation is even more efficient than CMAC, as it does not
require any block cipher calls.

We proved that Chaskey is secure, based on the 3PRP-indistinguishability of three underly-
ing Even-Mansour block ciphers. Assuming that the permutation π used in these Even-Mansour
block ciphers is ideal, we proved that Chaskey is secure up to about D = 2n/2 chosen plaintexts
and about T = 2n/D queries to π or π−1.

We remark, however, that the efficient permutation π designed for Chaskey shows properties
that allow it to be distinguished from an ideal permutation. For example, it is easy to find a
fixed point: π(0n) = 0n. Fortunately, this observation does not extend to an attack when this
permutation is used inside an Even-Mansour block cipher, as finding this fixed point implies
knowledge of the secret key.

Therefore, we explored the distinguishability of the three Even-Mansour block ciphers from a
cryptanalysis point of view. After investigating a wide variety of currently known cryptanalysis
attacks, we found no shortcut attacks resulting from using our proposed eight-round permutation
π instead of an ideal permutation. We recommend, however, that implementers also support a
16-round Chaskey-LTS as a fallback in case of cryptanalytical breakthroughs.

Our benchmarks showed that Chaskey performs very well on ARM Cortex-M microcon-
trollers. We measured that our straightforward Chaskey implementations are between 7 to 15
times faster than AES-128-CMAC in speed-optimized implementations, and at about 10 times
smaller in area optimized implementations. Because of the roughly linear relation between cy-
cle count and energy consumption, Chaskey is therefore much more energy efficient as well.
Although 32-bit microcontrollers were our main target platform, Chaskey is also expected to
perform well on 8-bit and 16-bit platforms.

Acknowledgments. This work was supported in part by the Research Council KU Leuven:
GOA TENSE (GOA/11/007) and OT/13/071. Nicky Mouha and Bart Mennink are Postdoc-
toral Fellows of the Research Foundation – Flanders (FWO).

15

References

1. Ambler, E.: Computer Data Authentication. FIPS PUB 113, National Institute of Standards and Technology
(NIST) (May 1985), http://csrc.nist.gov/publications/fips/fips113/fips113.html

2. Aoki, K., Sasaki, Y.: Preimage Attacks on One-Block MD4, 63-Step MD5 and More. In: Avanzi et al. [7],
pp. 103–119

3. Aumasson, J.P., Bernstein, D.J.: SipHash: A Fast Short-Input PRF. In: Galbraith, S.D., Nandi, M. (eds.)
INDOCRYPT. LNCS, vol. 7668, pp. 489–508. Springer (2012)

4. Aumasson, J.P., Bernstein, D.J.: SipHash: a fast short-input PRF. https://131002.net/siphash/ (March
2014)

5. Aumasson, J.P., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New Features of Latin Dances: Analysis
of Salsa, ChaCha, and Rumba. In: Nyberg, K. (ed.) FSE. LNCS, vol. 5086, pp. 470–488. Springer (2008)

6. Aumasson, J.P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and for the core functions of
Luffa and Hamsi. Presented at the rump session of Cryptographic Hardware and Embedded Systems - CHES
2009 (2009)

7. Avanzi, R.M., Keliher, L., Sica, F. (eds.): Selected Areas in Cryptography, 15th International Workshop,
SAC 2008, Sackville, New Brunswick, Canada, August 14-15, Revised Selected Papers, LNCS, vol. 5381.
Springer (2009)

8. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Authentication. In: Koblitz [47],
pp. 1–15

9. Bellare, M., Kilian, J., Rogaway, P.: The Security of Cipher Block Chaining. In: Desmedt, Y. (ed.) CRYPTO.
LNCS, vol. 839, pp. 341–358. Springer (1994)

10. Bellare, M., Kohno, T.: A Theoretical Treatment of Related-Key Attacks: RKA-PRPs, RKA-PRFs, and
Applications. In: Biham, E. (ed.) EUROCRYPT. LNCS, vol. 2656, pp. 491–506. Springer (2003)

11. Bernstein, D.J.: The Poly1305-AES Message-Authentication Code. In: Gilbert and Handschuh [39], pp. 32–49
12. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak SHA-3 submission. Submission to the

NIST SHA-3 Competition (Round 3) (2011)
13. Biham, E.: New Types of Cryptoanalytic Attacks Using related Keys (Extended Abstract). In: Helleseth, T.

(ed.) EUROCRYPT. LNCS, vol. 765, pp. 398–409. Springer (1993)
14. Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. J. Cryptology 7(4), 229–246 (1994)
15. Biryukov, A., Wagner, D.: Slide Attacks. In: Knudsen, L.R. (ed.) FSE. LNCS, vol. 1636, pp. 245–259. Springer

(1999)
16. Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: UMAC: Fast and Secure Message Authentica-

tion. In: Wiener, M.J. (ed.) CRYPTO. LNCS, vol. 1666, pp. 216–233. Springer (1999)
17. Black, J., Rogaway, P.: CBC MACs for Arbitrary-Length Messages: The Three-Key Constructions. In: Bellare,

M. (ed.) CRYPTO. LNCS, vol. 1880, pp. 197–215. Springer (2000)
18. Black, J., Rogaway, P.: CBC MACs for Arbitrary-Length Messages: The Three-Key Constructions. J. Cryp-

tology 18(2), 111–131 (2005)
19. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique Cryptanalysis of the Full AES. In: Lee, D.H.,

Wang, X. (eds.) ASIACRYPT. LNCS, vol. 7073, pp. 344–371. Springer (2011)
20. Bogdanov, A., Rechberger, C.: A 3-Subset Meet-in-the-Middle Attack: Cryptanalysis of the Lightweight

Block Cipher KTANTAN. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) Selected Areas in Cryptography.
LNCS, vol. 6544, pp. 229–240. Springer (2010)

21. Carter, J.L., Wegman, M.N.: Universal Classes of Hash Functions. J. Comput. Syst. Sci. 18(2), 143–154
(1979)

22. Chen, L.: Recommendation for Key Derivation Using Pseudorandom Functions (Revised). NIST special
publication 800-108, National Institute of Standards and Technology (NIST) (October 2009), http://csrc.
nist.gov/publications/nistpubs/800-108/sp800-108.pdf

23. Chen, S., Steinberger, J.: Tight Security Bounds for Key-Alternating Ciphers. In: Nguyen, P.Q., Oswald, E.
(eds.) EUROCRYPT. LNCS, vol. 8441. Springer (2014)

24. Clercq, R.D., Uhsadel, L., Herrewege, A.V., Verbauwhede, I.: Ultra Low-Power implementation of ECC
on the ARM Cortex-M0+. In: 2014th Design Automation Conference (DAC 2014). p. 6. IEEE, San Fran-
cisco,SF,USA (2014), to appear

25. Daemen, J., Rijmen, V.: A New MAC Construction ALRED and a Specific Instance ALPHA-MAC. In:
Gilbert and Handschuh [39], pp. 1–17

26. Daemen, J., Rijmen, V.: The Pelican MAC Function. IACR Cryptology ePrint Archive 2005, 88 (2005)
27. Davies, D.W.: Some Regular Properties of the ‘Data Encryption Standard’ Algorithm. In: Chaum, D., Rivest,

R.L., Sherman, A.T. (eds.) CRYPTO. pp. 89–96. Plenum Press, New York (1982)
28. De Cannière, C.: Trivium: A Stream Cipher Construction Inspired by Block Cipher Design Principles. In:

Katsikas, S.K., Lopez, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC. LNCS, vol. 4176, pp. 171–186.
Springer (2006)

16

29. De Cannière, C., Dunkelman, O., Knezevic, M.: KATAN and KTANTAN - A Family of Small and Efficient
Hardware-Oriented Block Ciphers. In: Clavier, C., Gaj, K. (eds.) CHES. LNCS, vol. 5747, pp. 272–288.
Springer (2009)

30. De Cannière, C., Preneel, B.: Trivium. In: Robshaw, M.J.B., Billet, O. (eds.) The eSTREAM Finalists,
LNCS, vol. 4986, pp. 244–266. Springer (2008)

31. Dinur, I., Shamir, A.: Cube Attacks on Tweakable Black Box Polynomials. In: Joux, A. (ed.) EUROCRYPT.
LNCS, vol. 5479, pp. 278–299. Springer (2009)

32. Dunkelman, O., Keller, N., Shamir, A.: Minimalism in Cryptography: The Even-Mansour Scheme Revisited.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT. LNCS, vol. 7237, pp. 336–354. Springer (2012)

33. Dworkin, M.: Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication.
NIST special publication 800-38b, National Institute of Standards and Technology (NIST) (May 2005),
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

34. Dworkin, M.: Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and
GMAC. NIST special publication 800-38d, National Institute of Standards and Technology (NIST) (Novem-
ber 2007), http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

35. Even, S., Mansour, Y.: A Construction of a Cioher From a Single Pseudorandom Permutation. In: Imai, H.,
Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT. LNCS, vol. 739, pp. 210–224. Springer (1991)

36. Even, S., Mansour, Y.: A Construction of a Cipher from a Single Pseudorandom Permutation. J. Cryptology
10(3), 151–162 (1997)

37. Ferguson, N.: Authentication weaknesses in GCM. Comments submitted to NIST Modes of Operation Process
(May 2005)

38. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J., Walker, J.: The
Skein Hash Function Family. Submission to the NIST SHA-3 Competition (Round 3) (2010), http://www.
skein-hash.info/sites/default/files/skein1.3.pdf

39. Gilbert, H., Handschuh, H. (eds.): Fast Software Encryption: 12th International Workshop, FSE 2005, Paris,
France, February 21-23, 2005, Revised Selected Papers, LNCS, vol. 3557. Springer (2005)

40. ISO/IEC: Information Technology: Information Technology – Security Techniques – Message Authentication
Codes (MACs) – Part 1: Mechanisms Using a Block Cipher. ISO/IEC 9797-1:2011 (2011)

41. Iwata, T., Kurosawa, K.: OMAC: One-Key CBC MAC. In: Johansson, T. (ed.) FSE. LNCS, vol. 2887, pp.
129–153. Springer (2003)

42. Iwata, T., Kurosawa, K.: Stronger Security Bounds for OMAC, TMAC, and XCBC. In: Johansson, T.,
Maitra, S. (eds.) INDOCRYPT. LNCS, vol. 2904, pp. 402–415. Springer (2003)

43. Joux, A.: Authentication Failures in NIST version of GCM. Comments submitted to NIST Modes of Oper-
ation Process (June 2006)

44. Khovratovich, D., Nikolic, I.: Rotational Cryptanalysis of ARX. In: Hong, S., Iwata, T. (eds.) FSE. LNCS,
vol. 6147, pp. 333–346. Springer (2010)

45. Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for Preimages: Attacks on Skein-512 and the SHA-2
Family. In: Canteaut, A. (ed.) FSE. LNCS, vol. 7549, pp. 244–263. Springer (2012)

46. Knudsen, L.R., Rijmen, V.: Known-Key Distinguishers for Some Block Ciphers. In: Kurosawa, K. (ed.)
ASIACRYPT. LNCS, vol. 4833, pp. 315–324. Springer (2007)

47. Koblitz, N. (ed.): Advances in Cryptology - CRYPTO ’96, 16th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 18-22, 1996, Proceedings, LNCS, vol. 1109. Springer (1996)

48. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In:
Koblitz [47], pp. 104–113

49. Krovetz, T.: Message Authentication on 64-Bit Architectures. In: Biham, E., Youssef, A.M. (eds.) Selected
Areas in Cryptography. LNCS, vol. 4356, pp. 327–341. Springer (2006)

50. Leurent, G.: Analysis of Differential Attacks in ARX Constructions. In: Wang, X., Sako, K. (eds.) ASI-
ACRYPT. LNCS, vol. 7658, pp. 226–243. Springer (2012)

51. Leurent, G.: Construction of Differential Characteristics in ARX Designs Application to Skein. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO. LNCS, vol. 8042, pp. 241–258. Springer (2013)

52. Lipmaa, H., Moriai, S.: Efficient Algorithms for Computing Differential Properties of Addition. In: Matsui,
M. (ed.) FSE. LNCS, vol. 2355, pp. 336–350. Springer (2001)

53. MAGEEC (MAchine Guided Energy Efficient Compilation): http://mageec.org (2014)
54. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, Impossibility Results on Reductions, and Ap-

plications to the Random Oracle Methodology. In: Naor, M. (ed.) TCC. LNCS, vol. 2951, pp. 21–39. Springer
(2004)

55. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack: Cryptanalysis of Reduced
Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE. LNCS, vol. 5665, pp. 260–276. Springer (2009)

56. Mozans, H.J.: Along the Andes and Down the Amazon, vol. 2. D. Appleton and company (1911)
57. National Institute of Standards and Technology: Announcing Request for Candidate Algorithm Nominations

for a New Cryptographic Hash Algorithm (SHA-3) Family. Federal Register 27(212), 62212–62220 (November
2007), http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

17

58. Patarin, J.: The “Coefficients H” Technique. In: Avanzi et al. [7], pp. 328–345
59. Preneel, B., van Oorschot, P.C.: MDx-MAC and Building Fast MACs from Hash Functions. In: Coppersmith,

D. (ed.) CRYPTO. LNCS, vol. 963, pp. 1–14. Springer (1995)
60. RealTimeLogic: SHARKSSL v2.3.3 Crypto Library Benchmarks with ARM Cortex-M0@24MHz + ARM

GCC 4.5.1. http://realtimelogic.com/products/sharkssl/Cortex-M0/ (2014)
61. RealTimeLogic: SHARKSSL/RAYCRYPTO v2.4 Crypto Library Benchmarks with ARM Cortex-

M3@50MHz + IAR EWARM 6.40. http://realtimelogic.com/products/sharkssl/Cortex-M3/ (2014)
62. Rechberger, C.: On Bruteforce-Like Cryptanalysis: New Meet-in-the-Middle Attacks in Symmetric Crypt-

analysis. In: Kwon, T., Lee, M.K., Kwon, D. (eds.) ICISC. LNCS, vol. 7839, pp. 33–36. Springer (2012)
63. Rijmen, V., Oswald, E.: Update on SHA-1. In: Menezes, A. (ed.) CT-RSA. LNCS, vol. 3376, pp. 58–71.

Springer (2005)
64. Sasaki, Y., Aoki, K.: Preimage Attacks on Step-Reduced MD5. In: Mu, Y., Susilo, W., Seberry, J. (eds.)

ACISP. LNCS, vol. 5107, pp. 282–296. Springer (2008)
65. Turner, J.M.: The Keyed-Hash Message Authentication Code (HMAC). FIPS PUB 198-1, National Institute

of Standards and Technology (NIST) (July 2008), http://csrc.nist.gov/publications/fips/fips198-1/
FIPS-198-1_final.pdf

66. Wegman, M.N., Carter, J.L.: New Hash Functions and Their Use in Authentication and Set Equality. J.
Comput. Syst. Sci. 22(3), 265–279 (1981)

67. Wei, L., Rechberger, C., Guo, J., Wu, H., Wang, H., Ling, S.: Improved Meet-in-the-Middle Cryptanalysis of
KTANTAN (Poster). In: Parampalli, U., Hawkes, P. (eds.) ACISP. LNCS, vol. 6812, pp. 433–438. Springer
(2011)

18

