
Practical Collisions for EnRUPT⋆

Sebastiaan Indesteege1,2,⋆⋆ and Bart Preneel1,2

1 Department of Electrical Engineering ESAT/COSIC, Katholieke Universiteit
Leuven. Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium.

sebastiaan.indesteege@esat.kuleuven.be
2 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium.

Abstract. The EnRUPT hash functions were proposed by O’Neil, Nohl
and Henzen [5] as candidates for the SHA-3 competition, organised by
NIST [4]. The proposal contains seven concrete hash functions, each hav-
ing a different digest length.

We present a practical collision attack on each of these seven EnRUPT
variants. The time complexity of our attack varies from 236 to 240 round
computations, depending on the EnRUPT variant, and the memory re-
quirements are negligible. We demonstrate that our attack is practical
by giving an actual collision example for EnRUPT-256.

Key words: EnRUPT, SHA-3 candidate, hash function, collision attack.

1 Introduction

Cryptographic hash functions are important cryptographic primitives that are
employed in a vast number of applications, such as digital signatures and com-
mitment schemes. They are expected to possess several security properties, one of
which is collision resistance. Informally, collision resistance means that it should
be hard to find two distinct messages m 6= m′ that hash to the same value, i.e.,
h(m) = h(m′).

Many popular hash functions, such as MD5, SHA-1 and SHA-2 share a com-
mon design principle. The recent advances in the cryptanalysis of these hash
functions have raised serious concerns regarding their long-term security. This
motivates the design of new hash functions, based on different design strategies.
The National Institute of Standards and Technology (NIST) has decided to hold
a public competition, the SHA-3 competition, to develop a new cryptographic
hash function standard [4].

The EnRUPT hash functions were proposed by O’Neil, Nohl and Henzen [5]
as candidates in this SHA-3 competition. The proposal contains seven concrete
EnRUPT variants, each having a different digest length.

In this paper, we analyse EnRUPT and show that none of the proposed
EnRUPT variants is collision resistant. We present a practical collision attack

⋆ The final publication is available at www.springerlink.com.
⋆⋆ F.W.O. Research Assistant, Fund for Scientific Research — Flanders (Belgium).

http://dx.doi.org/10.1007/978-3-642-03317-9_15

Table 1. EnRUPT Parameters

EnRUPT digest word parallelisation security number of

variant length size level parameter state words

h w P s H

EnRUPT-128 128 bits 32 bits 2 4 8

EnRUPT-160 160 bits 32 bits 2 4 10

EnRUPT-192 192 bits 32 bits 2 4 12

EnRUPT-224 224 bits 64 bits 2 4 8

EnRUPT-256 256 bits 64 bits 2 4 8

EnRUPT-384 384 bits 64 bits 2 4 12

EnRUPT-512 512 bits 64 bits 2 4 16

requiring only 236 to 240 EnRUPT round computations, depending on the En-
RUPT variant. This is significantly less than the approximately 2n/2 hash com-
putations required for a generic collision attack on an n-bit hash function based
on the birthday paradox.

The structure of this paper is as follows. A short description of EnRUPT is
given in Sect. 2. Section 3 introduces the basic strategy we use to find collisions
for EnRUPT, which is based on the work on SHA by Chabaud and Joux [2] and
Rijmen and Oswald [9]. Sections 4, 5 and 6 apply this basic attack strategy to
EnRUPT, step by step. Our results, including an example collision for EnRUPT-
256, are presented in Sect. 7. Finally, Sect. 8 concludes.

2 Description of EnRUPT

In this section, we give a short description of the seven EnRUPT variants that
were proposed as SHA-3 candidates [5]. All share the same structure and use the
same round function. The only differences lie in the parameters used. Table 1
gives the values of these parameters for each EnRUPT variant.

2.1 The EnRUPT Hash Functions

The structure shared by all EnRUPT hash functions can be split into four phases:
preprocessing, message processing, finalisation and output. Figure 1 contains a
description of the EnRUPT hash functions in pseudocode.

In the preprocessing phase (lines 2–4) the input message is padded to be a
multiple of w bits, where w is the word size. Depending on the EnRUPT variant,
the word size w is 32 or 64 bits, see Table 1. The padded message is then split
into an integer number of w-bit words mi.

The internal state of EnRUPT consists of several w-bit words: H state words
xi, P ‘delta accumulators’ di, and a round counter r. All of these are initialised
to zero. The parameter P is equal to 2 for all seven EnRUPT variants. The value
of H depends on the digest length, as indicated in Table 1.

Then, in the message processing phase (lines 5–8), the round function is called
once for each w-bit padded message word mi. Each call to the round function
updates the internal state 〈d, x, r〉. A detailed description of the EnRUPT round
function is given in the next section, Sect. 2.2.

After all message words have been processed, a finalisation is performed
(lines 9–13). The EnRUPT round function is called once with the length of the
(unpadded) message, represented as a w-bit unsigned integer. Then, H blank
rounds, i.e., calls to the round function with a zero message word input, are
performed.

Finally, in the output phase (lines 14–18), the message digest is generated
one w-bit word at a time. The EnRUPT round function is called h/w times and,
after each call, the content of the ‘delta accumulator’ d0 is output.

2.2 The EnRUPT Round Function

The EnRUPT round function is based entirely on a number of simple operations
on words of w bits, such as bit shifts, bit rotations, exclusive OR and addition
modulo 2w. Figure 2 gives a description of the EnRUPT round function in pseu-
docode. The round function consists of s · P identical steps, where s and P are
parameters of the hash function. As indicated in Table 1, s = 4 and P = 2 for all
seven proposed EnRUPT variants. Thus, the EnRUPT round function consists
of eight steps.

In each step, several words of the state are selected (lines 4–7) and combined
into an intermediate value f (lines 9–10). Note that line 10 could equally be
described as a multiplication with 9 modulo 2w. The intermediate value f is
then used to update one state word, xγ , and one ‘delta accumulator’, di mod P

(lines 12–13).
After all steps have been performed, the round counter is incremented by

the number of steps that were carried out, i.e., s · P (line 15). Finally, the
input message word m is injected into one word of the internal state, the ‘delta
accumulator’ dP−1 (line 16).

3 Basic Attack Strategy

This section gives an overview of the linearisation method for finding collision
differential characteristics for a hash function, which we use to attack EnRUPT
in this work. This method was introduced by Chabaud and Joux [2], who applied
it to SHA-0 and simplified variants thereof. Later, it was extended further and
applied to SHA-1 by Rijmen and Oswald [9].

A Linear Hash Function. Consider a hypothetical hash function that consists
only of linear operations over GF(2). When the input messages are restricted
to a certain length, each output bit can be written as an affine function of the
input bits. The difference in each output bit is given by a linear function of the
differences in the input bits, as the constants (if any) cancel. A message difference

1: function EnRUPT (M)
2: /* Preprocessing */
3: m0, · · · , mt ←M || 1 || 0w−(|M|+1 mod w) s.t. ∀i, 0 ≤ i ≤ t : |mi| = w
4: d0, · · · , dP−1, x0, · · · , xH−1, r ← 0, · · · , 0
5: /* Message processing */
6: for i = 0 to n do

7: 〈d, x, r〉 ← round(〈d, x, r〉 , mi)
8: end for

9: /* Finalisation */
10: 〈d, x, r〉 ← round(〈d, x, r〉 , uintw(|M |))
11: for i = 1 to H do

12: 〈d, x, r〉 ← round(〈d, x, r〉 , 0)
13: end for

14: /* Output */
15: for i = 0 to h/w − 1 do

16: 〈d, x, r〉 ← round(〈d, x, r〉 , 0)
17: oi ← d0

18: end for

19: return o0 || · · · || oh/w−1

20: end function

Fig. 1. The EnRUPT Hash Function

1: function round (〈d, x, r〉 , m)
2: for i = 0 to s · P − 1 do /* An iteration of this loop is a “step” */
3: /* Compute indices */
4: α← r + (i + 1 mod P) mod H
5: β ← r + i + 2P mod H
6: γ ← r + i + P mod H
7: ξ ← r + i mod H
8: /* Compute intermediate f */
9: e← ((xα ≪ 1)⊕ xβ ⊕ di mod P ⊕ uintw(r + i)) ≫ w/4

10: f ← (e≪ 3) ⊞ e /* Multiplication with 9 modulo 2w */
11: /* Update state */
12: xγ ← xγ ⊕ f
13: di mod P ← di mod P ⊕ xξ ⊕ f
14: end for

15: r ← r + s · P
16: dP−1 ← dP−1 ⊕m /* Message word injection */
17: return 〈d, x, r〉
18: end function

Fig. 2. The EnRUPT Round Function

that leads to a collision can be found by equating the output differences to zero,
and solving the resulting system of linear equations over GF(2), for instance
using Gauss elimination. Any pair of messages with this difference will result in
a collision.

Linearising a Nonlinear Hash Function. Actual cryptographic hash functions
contain (also) nonlinear components, so this method no longer applies. However,
we may still be able to approximate the nonlinear components by linear ones and
construct a linear approximation of the entire hash function. For our purpose,
a good linear approximation λ(x) of a nonlinear function γ(x) is such that its
differential behaviour is close to that of γ(x). More formally, the equation

γ(x ⊕ ∆) ⊕ γ(x) = λ(x ⊕ ∆) ⊕ λ(x) = λ(∆) (1)

should hold for a relatively large fraction of values x. For instance, an addition
modulo 2w could be approximated by a simple XOR operation, i.e., ignoring the
carries.

Finding Collisions. A differential characteristic consists of a message difference
and a list of the differences in all (relevant) intermediate values. For the linear
approximation, it is easy to find a differential characteristic that leads to a
collision with probability one. But for the actual hash function, this probability
will be (much) lower.

If the differential behaviour of all the nonlinear components corresponds to
that of the linear approximations they were replaced with, i.e., if (1) holds si-
multaneously for each nonlinear component, we say that the differential charac-
teristic is followed. In this case, the message pair under consideration will not
only collide for the linearised hash function, but also for the original, nonlinear
hash function. Such a message pair is called a conforming message pair.

Hence, a procedure for finding a collision for the nonlinear hash function
could be to find a differential characteristic leading to collisions for a linearised
variant of the hash function. Then, a message pair conforming to the differential
characteristic is searched. In order to lower the complexity of the attack, it
is important to maximise the probability that the differential characteristic is
followed, i.e., we need to find a good differential characteristic.

4 Linearising EnRUPT

We now apply this general strategy to EnRUPT. Recall the description of the
EnRUPT round function in Fig. 2. Note that only the modular addition in line 10
is not linear over GF(2). Indeed, the computation of the indices in lines 4–7 and
the update of the round counter in line 15 do not depend on the message being
hashed and can thus be precomputed. The same holds for the inclusion of the
round counter in line 9, i.e., this can be seen as an XOR with a constant. The
other operations are all linear over GF(2).

Replacing the modular addition in line 10 with an XOR operation yields a
linearised round function, which we refer to as the EnRUPT-L round function.
The EnRUPT-L hash function, i.e., the hash function built on this linearised
round function, also consists solely of GF(2)-linear components.

5 The Collision Search

During the collision search phase, many collisions for EnRUPT-L are constructed,
and a collision for EnRUPT is searched among them. Since only the modular ad-
ditions (line 10 of Fig. 2) were approximated by XOR, these are the only places
where the propagation of differences could differ between EnRUPT-L and En-
RUPT. Instead of checking for a collision at the output, we can immediately
check if the difference at the output of each modular addition, i.e., the differ-
ence ∆f in the intermediate value f , still matches the differential characteristic.

5.1 An Observation on EnRUPT

We now make an important observation on the structure of the EnRUPT hash
function. It is possible to find a conforming message pair for a given differential
characteristic one round at a time.

Consider the message word mi, which is injected into the ‘delta accumulator’
dP−1 at the end of round i. In the first (P − 1) steps of the next round, dP−1

is not used, so mi can not influence the behaviour of the modular additions in
these steps. Starting from the P -th step of round (i+1), however, mi does have
an influence.

We can search for a value for mi such that the differential characteristic is
followed up to and including the first (P − 1) steps of round (i + 2). Starting
with the P -th step of round (i+2), the next message word, mi+1 also influences
the modular additions. Thus, we can keep mi fixed, and use the new freedom
available in mi+1 to ensure the differential characteristic is also followed for the
next s · P steps.

This drastically reduces the expected number of trials required to find a colli-
sion. Let pi denote the probability that the differential characteristic is followed
in a block of s ·P consecutive steps, starting at the P -th step of a round. Because
we can construct a conforming message pair one word at a time, the expected
number of trials is

∑

i 1/pi rather than
∏

i 1/pi. In other words, the complexities
associated with each block of s · P steps should be added together, rather than
multiplied. This possibility was ignored in the security analysis of EnRUPT [5],
leading to the wrong conclusion that attacks based on linearisation do not apply.

5.2 Accelerating the Collision Search

An simple optimisation can be made to the collision search, which will allow us to
ignore the probability associated with one step in each round. This optimisation

is analogous to Wang’s ‘single message modification’, which was first introduced
in the context of MD5 [11].

Consider the P -th step of a round. In this step, the ‘delta accumulator’ dP−1,
to which a new message word m was XORed at the end of the previous round,
is used for the first time. More precisely, it is used in line 9 of Fig. 2 to compute
the intermediate value e. Note however that these computations can be inverted.
We can choose the value of e, and compute backwards to find what the message
word m should be to arrive at this value of e.

The values of e which ensure that the difference propagation of the modular
addition in line 10 of Fig. 2 corresponds to that of its linear approximation can
be efficiently enumerated. Thus, rather than randomly picking values for m, we
can efficiently sample good values for e in this step, and compute backwards to
find the corresponding m. This ensures that the first modular addition affected
by a message word m will always exhibit the desired propagation of differences.
Thus, the P -th step of every round can be ignored in the estimation of the
complexity of the attack.

6 Finding Good Differential Characteristics

The key to lowering the attack complexity is to find a good differential charac-
teristic, i.e., a characteristic which is likely to be followed for the nonlinear hash
function. A general approach to this problem, based on finding low weight code-
words in a linear code, was proposed by Rijmen and Oswald [9] and extended
by Pramstaller et al. in [8]. In this section, we show how to apply this approach
to EnRUPT.

6.1 Coding Theory

As observed by Rijmen and Oswald [9], all of the differential characteristics
leading to a collision for the linearised hash function can be seen as the codewords
of a linear code.

Consider the EnRUPT-L hash function with a h-bit output length, and the
message input restricted to messages of t message words. Since it is linear over
GF(2), it is possible to express the difference in the output as a linear function
of the difference in the input message m:

[∆o]1×h = [∆m]1×tw · [O]tw×h . (2)

As the modular additions, or rather the multiplications with 9, in the EnRUPT
round function are approximated, we are also interested in the differences that
enter each of these operations. For EnRUPT restricted to t message blocks,
there are t · s · P such operations in total. Hence, we can combine the input
differences to these operations in a 1× tsPw bit vector ∆e. Again, for the linear
approximation, ∆e is simply a linear function of the message difference ∆m:

[∆e]1×tsPw = [∆m]1×tw · [E]tw×tsPw . (3)

Putting this together results in a linear code described by the following generator
matrix

G =
[

Itw×tw Etw×tsPw Otw×h

]

. (4)

Each codeword contains a message difference, the input differences to all approx-
imated modular additions, and finally the output difference.

Thus, each codeword is in fact a differential characteristic for EnRUPT-L,
and all differential characteristics for EnRUPT-L are codewords of this code. To
restrict ourselves to collision differentials, i.e., differential characteristicss ending
in a zero output difference, we can use Gauss elimination to force the h rightmost
columns of the generator matrix G to zero.

It is well known that the differential behaviour of modular addition can be
approximated by that of XOR when the Hamming weight of the input difference,
ignoring the most significant bit, is small [2,3,8,9]. As the input differences to the
modular additions are part of the codewords, we will attempt to find a codeword
with a low Hamming weight in this part of the codeword.

6.2 Low Weight Codewords

To find low weight codewords, we used a simple and straightforward algorithm
that is based on the assumption that a codeword of very low weight exists in the
code. For our purposes, this is a reasonable assumption, as only a very low weight
codeword will lead to an attack faster than a generic attack. The algorithm is
related to the algorithm of Canteaut and Chabaud [1] and the algorithm used
to find low weight codewords for linearised SHA-1 by Pramstaller et al. [8].

Let G be the generator matrix of the linear code as in (4). We randomly
select a set I of (appropriate) columns of the generator matrix G and force
them to zero using Gauss elimination, until only d rows remain, where d is
a parameter of the algorithm. Then, the remaining space of 2d codewords is
searched exhaustively. This procedure is repeated until a codeword of sufficiently
low weight is encountered. By replacing only the ‘oldest’ column(s) in I, instead
of restarting from the beginning every time, the algorithm can be implemented
efficiently in practice.

If a codeword of very low weight exists in the code, it is likely that all of
the columns in the randomly constructed set I will coincide with zeroes in the
codeword, which implies that the codeword will be found in the exhaustive search
phase. In the case of the codes originating from the seven linearised EnRUPT
variants we consider, this algorithm finds a codeword of very low weight in a
matter of minutes on a PC. Repeated runs of the algorithm always find the
same codewords, so it is reasonable to assume that these are indeed the best
codewords we can find.

6.3 Estimating the Attack Complexity

Actually, the weight of a codeword is only a heuristic for the attack complexity
resulting from the corresponding differential. Codewords with a lower weight are

expected to result in a lower attack complexity, but we can easily enhance our
algorithm to optimise the actual attack complexity, rather than just a crude
heuristic.

The Differential Probability. The probability that a differential characteristic is
followed, is determined by the differences that are input to each of the multipli-
cations with 9 (line 10 in Fig. 2) that were approximated using XOR operations.
Denote by DP×9(∆) the probability that the propagation of differences through
this nonlinear operation coincides with that of its linear approximation:

DP×9(∆) = Pr
x

[

(x × 9) ⊕ ((x ⊕ ∆) × 9) = ∆ ⊕ (∆ ≪ 3)
]

. (5)

The differential probability of modular addition was studied by Lipmaa and
Moriai [3]. Applying their results to this situation, and taking into account that
the three least significant bits of (x ≪ 3) are always zero, we find the following
estimate for DP×9(∆):

DP×9(∆) ≈ 2
−wt

(

(

∆∨(∆≪3)
)

∧0111···111000b

)

. (6)

Even though this estimate ignores the dependency between x and (x ≪ 3), this
confirms the intuition that a difference ∆ with a low Hamming weight (ignoring
the most significant bit and the three least significant bits) results in a large
probability DP×9(∆). We used this as a heuristic to find a good differential
characteristic: we want to minimise the Hamming weight of the relevant parts of
the differences that are input to the modular additions. In other words, we want
to find a low weight codeword of the aforementioned linear code, where only the
bits that impact DP×9(∆) are counted.

Exact Computation of the Differential Probability. Computing the exact value of
DP×9(∆) for any given difference ∆ can be done by counting all the values x for
which the differences propagation is as predicted by the linear approximation.
This can be done efficiently as the modular addition can be represented com-
pactly as a trellis, where each path through the trellis corresponds to a ‘good’
value of x. Using a slight variant of the Viterbi algorithm [10], the number of
paths in the trellis can be counted efficiently. While this is very useful for evalu-
ating the attack complexity, it lacks the clear intuition we can gather from (6).

Computing the Attack Complexity. Let pr,i be the differential probability asso-
ciated with the modular addition in step i of round r of the differential char-
acteristic. Recall the observation made in Sect. 5.1, i.e., finding a conforming
message pair can be done one round at a time, or rather one message word at a
time, as this does not coincide precisely with the round boundaries. Taking this
into account, the complexity of finding the j-th word of a conforming message
pair can thus be computed as

Cj =

(

sP−1
∏

i=P−1

1

pj+1,i

)(

P−2
∏

i=0

1

pj+2,i

)

. (7)

Due to the acceleration technique presented in Sect. 5.2, we are guaranteed that
the differential behaviour of the modular addition in step P−1 of each round will
be as desired. Thus, we can set pP−1 = 1. With the default EnRUPT parameters
(P = 2 and s = 4, see Table 1), this then becomes

Cj =
1

pj+1,2
·

1

pj+1,3
·

1

pj+1,4
·

1

pj+1,5
·

1

pj+1,6
·

1

pj+1,7
·

1

pj+2,0
. (8)

Finally, as was explained in Sect. 5.1, note that each message word can be found
independent of the previous ones, due to the newly available degrees of freedom in
each message word. Hence, the overall attack complexity can simply be computed
as the sum of these round complexities:

Ctot =
t
∑

j=0

Cj . (9)

Note that, given a differential characteristic, it is easy to compute the asso-
ciated attack complexity. Hence, when searching for a good differential charac-
teristic using the algorithm described in Sect. 6.2, we can use the actual attack
complexity instead of the weight of the codeword. The algorithm still implicitly
uses the weight of a codeword as a heuristic, but now attempts to optimise the
actual attack complexity directly.

7 Results and Discussion

We constructed differential characteristics for each of the seven EnRUPT vari-
ants in the EnRUPT SHA-3 proposal [5]. Table 2 lists the attack complexity
and the length of the best characteristic we found for each variant. Recall that
we fixed the length of the characteristic a priori. Note however that nothing
prevents our search algorithm from proposing a shorter characteristic, padded
with rounds without any difference, which we also observed in practice. We ex-
perimented with (much) longer maximum characteristic lengths, but found no
better long characteristics.

The time complexities vary from 236 to 240 round computations, depending
on the EnRUPT variant, which is remarkable. It means that the collision resis-
tance in absolute terms of each of these EnRUPT variants is more or less the
same, regardless of the digest length. Relative to the expected collision resistance
of approximately 2n/2 for an n-bit hash function, however, the (relative) collision
resistance of EnRUPT is much lower for the variants with a longer digest length
than for those with a shorter digest length.

As an example, Table 3 lists our differential characteristic for EnRUPT-256
with an associated attack complexity of 237 EnRUPT round computations. Each
line in the table corresponds to one step of the EnRUPT round function. The
difference in the input (∆e) and the output (∆f) of the modular addition in
that step is indicated. Also, the message word differences are shown at the end
of each round. The table also includes the differential probabilities of each step,

Table 2. Summary of our attacks. Only the best attack is listed for each En-
RUPT variant.

EnRUPT estimated length of

variant time complexity collision differential

[EnRUPT rounds] [message words]

EnRUPT-128 236.04 6

EnRUPT-160 237.78 7

EnRUPT-192 238.33 8

EnRUPT-224 237.02 6

EnRUPT-256 237.02 6

EnRUPT-384 239.63 8

EnRUPT-512 238.46 10

which were used to compute the attack complexity. A star (‘⋆’) indicates that
the differential probability can be ignored in that step because of the technique
presented in Sect. 5.2. The product of the step probabilities is given for eight
consecutive steps. Note that these do not coincide with the rounds, as was dis-
cussed in Sect. 6.3. A collision example for EnRUPT-256, obtained using this
characteristic, is given in Table 4.

Discussion. In response to these collision attacks, the designers of EnRUPT
proposed to double the s parameter to 8, or to increase it even further to be
equal to the H-parameter, see Table 1 [6,7]. As a consequence of this, the number
of steps between two message word injections is at least doubled. Experiments
with these EnRUPT variants indicate that this tweak seems to be effective at
stopping the attacks described in this paper. For EnRUPT-256 with s = 6, we
were still able to find a differential with an associated attack complexity of about
2110 EnRUPT rounds, which is still below the birthday bound. For higher values
of the s parameter, all the differential characteristics we could find would result
in attack complexities that are far beyond than the birthday bound, and thus
should not be considered to be real attacks.

Note that the failure of this heuristic attack method for s = 8 or s = H does
not preclude the possibility of attacks based on linearisation. Our experiments
only show that it is unlikely that the particular attack method used in this work
can be applied directly to EnRUPT with s ≥ 8.

8 Conclusion

We presented collision attacks on all seven variants of the EnRUPT hash func-
tion [5] that were proposed as candidates to the NIST SHA-3 competition [4].
The attacks require negligible memory and have time complexities ranging from
236 to 240 EnRUPT round computations, depending on the EnRUPT variant.
The practicality of the attacks has been demonstrated with an example collision
for EnRUPT-256.

Table 3. Our Differential Characteristic for EnRUPT-256

Round Step ∆e → ∆f DP×9 totals

inject message word difference ∆m−1 = 0000000008000000x

0 0 0000000000000000x → 0000000000000000x 2−0.00
2
−0.00

1 0000000000000800x → 0000000000004800x ⋆

2 9000000000000000x → 1000000000000000x 2−0.85

3 4800000000000800x → 0800000000004800x 2−3.70

4 9000000000000000x → 1000000000000000x 2−0.85

5 4800280000000800x → 0801680000004800x 2−7.28

6 90000002d0000000x → 1000001450000000x 2−6.43

7 0000280168000800x → 0001680a28004800x 2−11.02

inject message word difference ∆m0 = 0000002280000000x

1 0 90000002d0000000x → 1000001450000000x 2−6.43
2
−36.56

1 0000280168000000x → 0001680a28000000x ⋆

2 90000002d0000000x → 1000001450000000x 2−6.43

3 4800280000000000x → 0801680000000000x 2−5.43

4 90000002d0000000x → 1000001450000000x 2−6.43

5 0000080000000000x → 0000480000000000x 2−1.85

6 9000000240000000x → 1000001040000000x 2−3.70

7 4800080120000000x → 0800480820000000x 2−6.54

inject message word difference ∆m1 = 0000002288000000x

2 0 9000000240000000x → 1000001040000000x 2−3.70
2
−34.08

1 0000080048000000x → 0000480208000000x ⋆

2 9000000240000000x → 1000001040000000x 2−3.70

3 4800080168000000x → 0800480a28000000x 2−9.28

4 9000000240000000x → 1000001040000000x 2−3.70

5 0000200000000000x → 0001200000000000x 2−1.85

6 9000000000000000x → 1000000000000000x 2−0.85

7 4800200000000000x → 0801200000000000x 2−3.70

inject message word difference ∆m2 = 0000000208000000x

3 0 9000000000000000x → 1000000000000000x 2−0.85
2
−23.91

1 0000280120000000x → 0001680820000000x ⋆

2 9000000090000000x → 1000000410000000x 2−3.70

3 4800280168000000x → 0801680a28000000x 2−11.02

4 9000000090000000x → 1000000410000000x 2−3.70

5 0000080048000000x → 0000480208000000x 2−4.70

6 9000000090000000x → 1000000410000000x 2−3.70

7 4800080000000000x → 0800480000000000x 2−3.70

inject message word difference ∆m3 = 0000000200000000x

4 0 9000000090000000x → 1000000410000000x 2−3.70
2
−34.19

1 0000080000000800x → 0000480000004800x ⋆

2 0000000000000000x → 0000000000000000x 2−0.00

3 0000080000000800x → 0000480000004800x 2−3.70

4 0000000000000000x → 0000000000000000x 2−0.00

5 4800080048000800x → 0800480208004800x 2−8.39

6 0000000000000000x → 0000000000000000x 2−0.00

7 4800080048000800x → 0800480208004800x 2−8.39

inject message word difference ∆m4 = 0000000200000000x

5 0 0000000000000000x → 0000000000000000x 2−0.00
2
−20.49

1 0000000000000000x → 0000000000000000x ⋆

.

.

.
.
.
. →

.

.

.
.
.
.

7 0000000000000000x → 0000000000000000x 2−0.00
2
−0.00

Table 4. A Collision Example for EnRUPT-256

M 13x c8x 4bx 45x 62x 70x 17x 6ex

04x f9x 31x 7ex c3x 6cx e7x d3x

e1x 21x 78x 6ax 34x 74x 11x 19x

7fx 64x a3x c9x 40x 07x 75x 76x

a1x 4fx 90x 86x fdx c7x 33x 4ax

41x 3ax 76x 91x 96x 06x 2cx a1x.

M ′ 13x c8x 4bx 45x 6ax 70x 17x 6ex

04x f9x 31x 5cx 43x 6cx e7x d3x

e1x 21x 78x 48x bcx 74x 11x 19x

7fx 64x a3x cbx 48x 07x 75x 76x

a1x 4fx 90x 84x fdx c7x 33x 4ax

41x 3ax 76x 93x 96x 06x 2cx a1x.

EnRUPT-256(M) = bdx 67x 51x 7cx a6x c0x 41x 20x

EnRUPT-256(M ′) = 82x e0x 3bx 74x 5fx fcx 4ax 64x

e9x f0x 92x c2x 58x c3x 98x b8x

44x 9ax fex cbx 7fx c8x 6fx 72x.

Acknowledgements

This work was supported in part by the IAP Programme P6/26 BCRYPT of the Belgian

State (Belgian Science Policy), and in part by the European Commission through the

ICT programme under contract ICT-2007-216676 ECRYPT II. The collision example

for EnRUPT-256 was obtained utilizing high performance computational resources

provided by the University of Leuven, http://ludit.kuleuven.be/hpc.

References

1. Anne Canteaut and Florent Chabaud, “A New Algorithm for Finding Minimum-
Weight Words in a Linear Code: Application to McEliece’s Cryptosystem and to
Narrow-Sense BCH Codes of Length 511,” IEEE Transactions on Information The-
ory, vol. 44, nr. 1, pp. 367–378, 1998.

2. Florent Chabaud and Antoine Joux, “Differential Collisions in SHA-0,” In Ad-
vances in Cryptology – CRYPTO 1998, Lecture Notes in Computer Science,
vol. 1462, pp. 56–71, Springer, 1998.

3. Helger Lipmaa and Shiho Moriai, “Efficient Algorithms for Computing Differential
Properties of Addition,” In Fast Software Encryption – FSE 2001, Lecture Notes
in Computer Science, vol. 2355, pp. 336–350, Springer, 2002.

4. National Institute of Standards and Technology, “Announcing Request for Can-
didate Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3)
Family,” Federal Register, vol. 72, nr. 212, pp. 62212–62220, November 2007.

5. Sean O’Neil, Karsten Nohl and Luca Henzen, “EnRUPT Hash Function Specifi-
cation,” Submission to the NIST SHA-3 competition, 2008. Available online at
http://www.enrupt.com/SHA3/.

6. Sean O’Neil, personal communication, 20 January, 2009.

http://ludit.kuleuven.be/hpc
http://www.enrupt.com/SHA3/

7. Sean O’Neil, “EnRUPT,” The First SHA-3 Candidate Conference, Leuven, Bel-
gium, February 25–29, 2009. Available online at http://csrc.nist.gov/groups/

ST/hash/sha-3/Round1/Feb2009/documents/EnRUPT_2009.pdf.
8. Norbert Pramstaller, Christian Rechberger and Vincent Rijmen, “Exploiting Cod-

ing Theory for Collision Attacks on SHA-1,” In Cryptography and Coding, 10th
IMA International Conference, Lecture Notes in Computer Science, vol. 3796,
pp. 78–95, Springer, 2005.

9. Vincent Rijmen and Elisabeth Oswald, “Update on SHA-1,” In Topics in Cryp-
tology – CT-RSA 2005, Lecture Notes in Computer Science, vol. 3376, pp. 58–71,
Springer, 2005.

10. Andrew J. Viterbi, “Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm,” IEEE Transactions on Information Theory, vol. 13,
nr. 3, pp. 260–269, 1967.

11. Xiaoyun Wang and Hongbo Yu, “How to Break MD5 and Other Hash Functions,”
In Advances in Cryptology – EUROCRYPT 2005, Lecture Notes in Computer
Science, vol. 3494, pp. 19–35, Springer, 2005.

http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/Feb2009/documents/EnRUPT_2009.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/Feb2009/documents/EnRUPT_2009.pdf

